

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Engineering Properties of Biological Materials(16AG701)

Course & Branch: B.Tech - AG Year &Sem: II-B.Tech& I-Sem

Regulation: R16

UNIT -I

CLASSIFIACTION AND IMPORTANCE OF ENGINEERING PROPERTIES OF AGRICULTURAL PRODUCE

9. a) Define Bulk density and True density?	[05M]
b) Define Density and Specific gravity?	[05M]
10. Brief explains about surface area? Listout the surface area calculating methods? E	Explain about
the graphical method in area calculation of leaf with diagram?	[10M]
UNIT –II THERMAL PROPERTIES	
1. Briefly explain the thermal properties?	[10M]
2. Determination of thermal conductivity of grains and food materials?	[10M]
3. a) Discuss about the importance of thermal properties?	[05M]
b) Explain about specific heat and latent heat?	[05M]
4. a) Define the conduction, convection and radiation. ?	[05M]
b) Explain about importance of heat treatment in food cereals?	[05M]
5. a) Explain about factors effecting the thermal properties?b) Define thermal processing of heating, cooling, freezing, drying, melting, freezing.	[05M] ing point? [05M]
6. Explain about the thermal conductivity, thermal diffusivity, surface heat transfe and their importance in agriculture?	er, emissivity [10M]
7. What type of thermal properties is considered at the time of design of dryer?	[10M]
8. a) Difference between conduction convection radiation?	[05M]
b) Describe enthalpy?	[05M]
9. How can it useful thermal properties in agricultural sector?	[10M]
10. Define	
i. Heat capacity	[02M]
ii. Heat of respiration	[02M]
iii. Coefficient of thermal expansion	[02M]
iv. Specific latent heat	[02M]
v. Thermal conductivity.	[02M]

 $[5\times2=10M]$

UNIT –III

FRICTION IN AGRICULTRAL MATERIALS

1.	What is angle of repose? Explain the methods for measuring angle of repose?	[10M]
2.	What is friction coefficient? Explain the internal and external friction?	[10M]
3.	What are frictional properties and Explain about static friction, kinetic friction	and rolling
	resistance with neat diagram?	[10 M]
4.	a) Briefly explanation about importance of frictional properties in a	agricultural
	engineering?	[05M]
	b) Explain about static angle of repose, dynamic angle of repose?	[05M]
5.	a)Difference between the angle of repose and angle of internal friction?	[05M]
	b) How moisture content effects the angle of repose?	[05M]
6.	Write importance of wall friction and kernel friction in design of chutes and ho	oppers?
		[10M]
7.	Explain the determination of coefficient friction with neat sketch?	[10M]
8.	What is terminal velocity? Derive expression for terminal velocity?	[10M]
9.	What is drag coefficient? Derive expression for drag coefficient?	[10M]
10.	. Briefly explain about flow of bulk granular materials?	[10M]
	UNIT –II	

RHEOLOGICAL PROPERTIES

1.	Explain Rheological properties of ideal elastic, ideal plastic and pure viscous behavior with		
	neat diagram?	[10M]	
2.	Define Maxwell model and Explain Generalized Maxwell model with neat diagram?	[10M]	
3.	Define Kelvin model and Explain Generalized Kelvin model with neat diagram?	[10M]	
4.	A) Define the Rheology and classify the rheology with neat flow chart?	[05M]	
	B) Briefly explain about importance of Rheology?	[05M]	
5. (Classify and explain about non Newtonian fluids?	[10M]	

a. Elasticity

6. Briefly explain about the following

b. Plasticity

- c. Viscosity
- d. Poisons law
- e. Stress
- 7. Briefly explain about the following

 $[5 \times 2 = 10M]$

- a. Nominal stress
- b. Strain
- c. Viscous behavior
- d. Bingham plastic
- e. Shear strength
- 8. Explain about the following

 $[5 \times 2 = 10M]$

- a. Shear strain and shear stress
- b. True strain and true stress
- c. Tensile strain and tensile stress
- d. Macro strain and micro strain
- e. Normal stress and tensile strength
- 9. a) Explain about modulus of elastic?
- b) Explain about application of rheological data in food industry in food processing industry?
- 10. Explain about force deformation curve for an agricultural product with a neat sketch? [10M]

UNIT -V

ELECTRICAL PROPERTIES

- 1) Write brief explanation about importance of electrical properties and Summaries the difference between dielectric, ohmic and infrared energy? [10M]
- 2) Explain about the factors affecting the electrical properties of biological materials? [10M]
- 3) Explain about scope and importance of electrical properties of biological materials?

[10M]

4) Explain about fundamentals of electrical properties?

[10M]

[10M] 6) Explain about dielectric heating? [10M]

5) Explain about electrostatic separation of seeds and foreign matters with neat figure?

7) a) Briefly explain about die electrical constant and die electrical loss factor? [05M]b) Explain about methods of die eclectic measurements? [05M]

8) Explain about importance of mechanical, frictional properties in storage structures?

[10M]

9) Briefly write about applications of die electric? [10M]

10) Write the short note on any five of the following $[5 \times 2 = 10M]$

- (a) Textural property
- (b) Ohmic energy
- (c) Infrared energy
- (d) Resistance energy
- (e) Radio frequency
- (f) Micro wave

Prepared by: CH.WAGDEVI

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : Engineering Properties of Biological Materials (16AG701)

Course & Branch: B.Tech – AG Year &Sem: II-B.Tech& I-Sem

Regulation: R16

UNIT -I

CLASSIFIACTION AND IMPORTANCE OF ENGINEERING PROPERTIES OF AGRICULTURAL PRODUCE

1.	The property which is useful and ne	cessaryin the design and	operation	of various
	equipment employed in the field of agric	cultural processing	[]
	(A) Engineering properties	(B) Mechanical properties		
	(C) Chemical properties	(D) None of the above		
2.	Which of the following physical property	ties are	[]
	(A)Size and Shape	(B) Surface area		
	(C) Volume and Density	(D) All		
3.	Various types of cleaning, grading and s	eparation equipment's are	designed o	n the basis
	of		[]
	(A) Physical properties of seed	(B) Mechanical		
	(C) Chemical	(D) Aerodynamics		
4.	Roundness is a measure of the sharpness	s of the	[]
	(A) Solid material	(B) Liquid material		
	(C) Spray material	(D) Semi solid materi	ial	
5.	The most widely accepted method for de	etermining the roundness of	irregular p	oarticles are
	(A) Round ness = Area of smallest]]
	(B) Roundness = <u>Largest projected area of</u>	of the particles when it is in	natural res	t position
	Area of smal	llest circumscribing circle		
	(C) Both a and b	(D) None of these		

6. Size of the irregular shap	ed food grains is repre	esented by	[]	
(A) Total diameter		(B) Average diameter	ſ		
(C) Perimeter		(D) Equivalent diamo	eter		
7. Which one of the following (A) Pycnometer	ing can be used for me	asurement of area of leaf (B) Pyrometer	? []	
(C)Planimeter		(D) Anemometer			
8. Specific gravity of grains	s is determined by		[]	
(A) Pycnometer		(B) Toluene displacen	nent method	l	
(C) Refract meter	11	(D) None of these	r	,	
9. Quality of seed can b	e expressed by	(D)Colour	[]	
(A)Dormancy (C)Vigour and viab	ility	(B)Colour (D) Texture			
10. The density of wheat is	=	(D) Texture		[]
(A) $85 \text{ to } 1100 \text{ kg/n}$		(B) 498 to 1238 kg/m^3		L	J
(C) 1150 to 1300 kg	g/m^3	(D) 1200 to 1450 kg/m	n^3		
11. The SI unit of density i	S			[]
(A) Kg/m3		(B) Kg/cm3			
(C) Kg		(D) None of the above			
12. The density of water is	about			[]
(A) 1000kg/m3	(B) 1kg/m3	(C) 1000kg	(D) 1m3		
13. The specific gravity of	water			[]
(A) 1	(B) 1000	(C) 10	(D) 100		
14. The SI units for length	is			[]
(A) Kg	(B) m	(C) s	(D) None	of these	;
15. The SI units for mass is				[]
(A) Kg	(B) g	(C) cm	(D) m		
16. The SI units for volume	eis			[]
(A) m3	(B) cm3	(C) kg/m3	(D) None	of these	.
17. The SI units for temperature 17.	ature is			[]
(A) %	(B) K (kelvins)	(C) kg	(D) None	e of thes	se
18. Volume of cube				[]
(A) s3	(B) s2	(C) s	(D) None	e of the	se
19. Volume of rectangular				[]
(A)L*W	(B) L*W*H	(C) L*H	(D) None	of these	:

ne of these
e of these
[] e of these
[]
ne of these
[]
one of these
[]
[]
)-70%
[]
ne of these
[]
es
[]
d
e
[]
ımscribing
[]
[]

(B) Changes as	a result of change	in shape and particle d	ensity		
(C) Changes as	a result of change	in the angle of repose			
(D) Remains co	nstant				
33. True density of	an agricultural pro	duce is 1000 kg/m ³ ar	nd bulk density is 40	kg/m ³ .	The
porosity of the produ	act is			[]
(A)0.4	(B) 0.8	(C) 0.86	(D) 0.96		
34. Agricultural prod	duce (Grading and	Marketing) act (AGM	ARK) is introduced in	the year	ar
				[]
(A) 1987	(B) 1937	(C) 1947	(D) 2007		
35.In India food safe	ety and standards a	ct as passed in the year	•	[]
(A) 1996	(B) 2006	(C) 2014	(D) None of these		
36. When two conta	ainers of same ma	terial and volume are	filled one with water	r and o	ther
with sunflower oil				[]
(A) Weight of t	wo containers is sa	me			
(B) Container v	vith water weight n	nore than container wit	th oil		
(C) Container v	vith oil weight mor	e than container with v	water (D) None o	f these	
37. When the quali	ty of food product	t is assessed by mean	s of human sensory	organs,	the
evaluation is said to	be			[]
(A) Sensory	(B) Subjective	(C) Organoleptic	(D) All of these		
38. FPO refers to				[]
(A) Food produ	cts order (B) l	Fruit products order			
(C)Food processing	order (D)	None of these			
39. ISO 9000:2000 d	quality managemen	t system leads with		[]
(A) Fundamenta	al and vocabulary		(B) Requirements		
(C) Guidelines	for performance an	nd improvement	(D) 2007		
40. Moisture content	t dry basis			[]
$(A) M_{db=}(Ww/$	Wd) *100 (B)	$M_{wb=}(Ww/Wd)*100$)		
$(C)M_{wb}=(Ww/W)$	Ww+Wd) *100(D)	$M_{db}=(Ww/Ww+Wd)$ *	100		

UNIT -II

THERMAL PROPERTIES

atement: Specific heat of a	n material	· []
r a material	(B) Heat capacit	y per unit mass	
operty	(D) Has units as	J/kg-K.	
units as]]
(B) J/mol.K	(C) J.ohm/sec.K2	2 (D) W/m.K	
conductivity]]
(B) J/mol.K	(C) J.ohm/sec.K2	2 (D) W/m.K	
on of a material has units a	s]]
(B) J/mol-K	(C) J.ohm/sec.K	(D) 1/°C	
uctivity of air is k cal/m.hi	r0c]]
(B) 0.002	(C) 0.012	(D) 0.0002	
ermal conductivities in the	range of]]
(B) 1-10	(C) 10-100	(D) >100	
ermal expansion coefficier	nts in the range of	_x10-6. []
(B) 5-25	(C) 25-50	(D) 50-400	
rmal expansion for cerami	cs is the range of	x10-6. []
(B) 5-25	(C) 25-50	(D) 50-400	
nal conductivities in the ra	nge of]]
(B) 1-5	(C) 5-25	(D) 20-400	
most materials is approximately	mately equal to	[]
(B) 2R	(C) 3R	(D) R/2	
temperature, thermal cond	ductivity of a metal	[]
(B) Decreases	(C) Either (l	D) All, depending on me	tal.
	r a material operty units as (B) J/mol.K conductivity (B) J/mol.K n of a material has units a (B) J/mol-K uctivity of air is k cal/m.hr (B) 0.002 ermal conductivities in the (B) 1-10 ermal expansion coefficier (B) 5-25 rmal expansion for cerami (B) 5-25 mal conductivities in the ra (B) 1-5 most materials is approximately	cramaterial (B) Heat capacity (D) Has units as units as (B) J/mol.K (C) J.ohm/sec.K2 (C) J.ohm/sec.K2 (C) J.ohm/sec.K2 (C) J.ohm/sec.K2 (C) J.ohm/sec.K3 (C) J.ohm/sec.K4 (C) J.ohm/sec.K4 (C) J.ohm/sec.K4 (C) J.ohm/sec.K5 (C) J.	(B) Heat capacity per unit mass operty (D) Has units as J/kg-K. units as [(B) J/mol.K (C) J.ohm/sec.K2 (D) W/m.K on of a material has units as [(B) J/mol-K (C) J.ohm/sec.K2 (D) W/m.K on of a material has units as [(B) J/mol-K (C) J.ohm/sec.K2 (D) 1/°C on the conductivity of air is k cal/m.hr0c [(B) 0.002 (C) 0.012 (D) 0.0002 or demail conductivities in the range of [(B) 1-10 (C) 10-100 (D) >100 or demail expansion coefficients in the range ofx10-6. [(B) 5-25 (C) 25-50 (D) 50-400 or demail expansion for ceramics is the range ofx10-6. [(B) 5-25 (C) 25-50 (D) 50-400 or demail conductivities in the range ofx10-6. [(B) 1-5 (C) 25-50 (D) 20-400 or demail conductivities in the range ofx10-6. [(B) 2R (C) 3R (D) R/2 temperature, thermal conductivity of a metal [

(C) Convection

(D) Fusion

(B) Conduction

(A) Radiation

(A) Conduction	(B) Radiation	(C) Convection	on (D) both B	and C	
21. In deep freezers, the wal (A) Conduction	ls absorb heat from (B) Convection	-	and keep the (D) None of the m		
22. Which of the following is (A) Low heat transfer (B) Due to gravity and (C) Dependent on visc (D) All of the mention	natural buoyant for osity, density and th	rces	y	[]
23. The reciprocal of heat to (A) Conductance (C) Density	(B) R	is Resistance Cemperature differe	ence	[]
24. Statement 1: hd/k is is the (A) Prandtl number, (C) Pictet number, P.	e ratio of convective Prandtl number	(B) Nu	onductive heat transussel number, Nusse ourier number, Four	el numbe	
25. To development of them	nal processing syste	em	are required	[]
(A) Thermal properti	es	(B) Ele	ectrical properties		
(C) Physical properti	es	(D) N	one of these		
26. Thermal properties does	not include			[]
(A) Cooling		(B) I	Heating		
(C) Drying		(D)	Rubbing		
27. Latent heat is a	properties			[]
(A) Thermal (B)	Electrical	(C) Biologic	eal (D) Phys	sical	
28. The heat treatment to the	cereals and some	of the pulses given	for	[]
(A) Simulating germinat	ion	(B) Simulate §	germination		
(C) Cool germination		(C) Hot germi	nation		
29is given f	or seeds for killing	of insect-pest in rec	cent years	[]
(A) Heat treatment		(B) Cool treat	ment		
(C) Conduction treatmen	t	(D) All of the	above		

30. For design of dryer	is importar	nt step]]
(A) Calculation of heat requ	uirement	(B) Calculation of se	eed requirement	
(C) Calculation of floor req	uirement	(C) All of the above		
31. For calculation of sensible	and latent heat	are requires	[]
(A) Specific heat		(B) Thermal conduct	tivity	
(c) Both A and B		(d) None of this		
32. Transient heat flow method (A) A spherical apparatus	3	(B) A line heat source	ce]
(C) A cylindrical apparatu 33. The dimension of thermal (A) MLT ² (B		(D) An ordinary then s (C) M ⁻¹ LT	(D) M°LT]
34. The amount of heat in Kild substance to change its temper (A) Latent heat			from one Kg of [(D) Entropy]
35. Unit of specific heat is (A) kJ/kg K (36. For a black body the transm	(B) W/mk missivity is	(C) W/m ² k	[(D) kg/kJ m []
(A) Zero (37. Thermal conductivity of a	(B) One single grain is follow	(C) Nil ing times greater than	(D) Above one that of bulk grain []
(A) 1-2 (38. Thermal diffusivity can be	B) 2-3 e expressed as	(C) 3-4	(D) None of these]
(A) UAΔT39. Total heat content or energ	(B)-KA/(Δ T/ Δ X) by level of the material	(C) $mC_p\Delta T$ all is called as	(D) K/ρC _p]
(A) Enthalpy (C) Thermal conducti 40. Which one of the followin	•	(B) Entropy (D) Heat transfer conductions of thermal conductions.]
(A) Iron	(B) Copper	(C) Water	(D) Air	
151D.	UNIT -		AIC	
1. Density of oats	ICTION IN AGRIC	CULTRAL MATERI	ALS]

(A) 963-654	(B) 738-968	(C) 998-1238	(D) 34.9
2. Terminal velocity of o	oats in m/s		[]
(A) 9-11.5	(B) 8.5-10	(C) 8-9	(D) 34.9
3. Drag coefficient range	e of ground nut kernel		[]
(A) 0.52064	(B) 0.38-0.62	(C) 0.33-0.51	(D) 34.9
4. Drag coefficient range	e of ground nut kernel so	oya bean (Punjab-1)	[]
(A) 0.52064	(B) 0.38-0.62	(C) 0.33-0.51	(D) 34.9
5. Drag coefficient range	e of soya bean (Lee)		[]
(A) 0.52064	(B) 0.38-0.62	(C) 0.33-0.51	(D) 34.9
6. Density of wheat			[]
(A) 1111-998	(B) 325-985	(C) 998-1238	(D) 34.9
7. Density of corn			[]
(A) 963-654	(B) 1138-1198	(C) 998-1238	(D) 34.9
8. Terminal velocity of c	orn in m/s		[]
(A) 9-11.5	(B) 8.5-10	(C) 8-9	(D) 34.9
9. Terminal velocity of s	oya bean in m/s		[]
(A) 44.3	(B) 8.5-10	(C) 8-9	(D) 34.9
10. Terminal velocity of	Rye in m/s		[]
(A) 9-11.5	(B) 8.5-10	(C) 8-9	(D) 34.9
11. Angle of friction for	smooth sheet metal in c	legrees	[]
(A) 15	(B) 8	(C) 25	(D) 38
12. Angle between the hole (A) Angle of report (C) Angle of external (C)	ose (B	n of heap is called the natu Angle of internal friction Angle of friction	

QUESTION BANK 2018

		QU	JESTION BANK	2018	
13. The frictional coefficien (A) Grain shape (C) Moisture conten	-	depend on (B) Surface characteristic (D) All of the above	:	[]
14. The maximum steep ang	gel which will no	t let material slide down	slope is called	[]
(A) Angle of mount	ain	(B) Angle of repose			
(C) Angle of slide		(D) Complex angle			
15. Terminal velocity of wh	eat in m/s			[]
(A) 9-11.5	(B) 8.5-10	(C) 8-9	(D) 34.9		
16. In rice, angle of internal	friction is			[]
(A) 25 Degrees Degrees	(B) 18 Degree	ees (C) 20 De	egrees (D)	24	
17. Safe moisture content of	f paddy (Wb) for	storage over one year is		[]
(A) 8 per cent cent	(B) 10 per ce	ent (C) 12 per	r cent (D) 14 per	
18. Angle of repose of Whe	at is			[]
(A) 23-28	(B) 30-45	(C) 30-40	(D)	28-40	
19. Angle of repose of Padd	ly is			[]
(A) 23-28	(B) 30-45	(C) 30-40	(D) 28-40		
20. Angle of repose of Maiz	ze is			[]
(A) 23-28	(B) 30-45	(C) 30-40	(D) 28-40		
21. Angle of repose of Barlo	ey is]]
(A) 23-28	(B) 30-45	(C) 30-40	(D) 28	3-40	
22. Angle of repose of Mille	ets is			[]
(A) 23-28	(B) 30-45	(C) 20-25	(D) 28	3-40	
23. Angle of repose of Rye	is			[]
(A) 23-28	(B) 30-45	(C) 23-28	(D) 28	3-40	

24. For design of storage bin	s and chutes	.properties are considered	[]
(A) Frictional	(B) Thermal	(C) Electrical	(D) All	
25. The friction may be define with respect to each other	ned as the frictional fo	rces acting between surfaces	of contact at r	est]
(A) Dynamic friction	(B) Moving friction	(C) Static friction	(D) All	
26. Frictional force existing l	between the surfaces i	n relative motion	[]
(A) Dynamic friction	(B) Moving friction	(C) Static friction	(D) All	
27. Angle of friction taken up	p by granular material	to just slide upon itself	[]
(A) Static angle of rep	ose (B) Dy	namic angle of repose		
(C) Static friction	(D) Al	1		
28. Dynamic angle of repose	is calculated under		[]
(A) Grains under motion	on (B) Gra	ins under static		
(C) Both a and b	(D) No	ne of the above		
29. In rice, angle of internal	friction is:		[]
(A) 24-26 degree	(B) 25-29 degrees	(C) 26-29 degrees	(D) All	
31. In maize, angle of interna	(B) 25-29 degrees	(C) 26-29 degrees (C) 26-29 degrees	[(D) All [(D) All]
32. In barley, angle of internation (A) 24-26 degree 33. The cohesive material hat (A) Highest	(B) 25-29 degrees	(C) 26-29 degrees repose (C) Medium	[(D) All [(D) All]
34. Lower angle of repose re (A) Easily flow ability	present	B) Toughly flow ability of p	[]
(C) Medium	(I	D) All		
35. Lower angle of repose re	present		[]
(A) Easily flow ability of	of product (1	B) toughly flow ability of pro	duct	

(C) Medium	(D) All			
36. Internal friction is	also called as			[]
(A) Wall friction	(B) Internal friction	(C) Medium friction	(D) Al	11	
37. External friction is	s also called as			[]
(A) Wall friction	(B) Internal friction	(C) Medium friction	(D) Kern	el fricti	on
38. Angle of friction f	or concrete in degrees			[]
(A) 15	(B) 8	(C) 25	(D) 38		
39. Angle of repose	with the increase of i	ncrease content of materia	al	[]
(A) Increase	(B) Decrease	(C) Constant	(D) None	of thes	e
40. In case of bulk gra	nular materials, the slope of	f yield locus is the angle of	of	[]
(A) Internal friction	on (B) External friction	(C) Coefficient of frict	ion (D) N	lone of	
these					
	UNIT	137			
		CAL PROPERTIES			
1 771 '				r	,
	-linear relationship between Newtonian fluid	(B) Newtonian fluid	e in	[]
(C) Both	of these	(D) None of these			
For Newtoniar Always	as fluids, the slope of the sho	ear stress versus shear rat	e graph is	г	1
(A) Curv	e	(B) Non -linear		[]
(C) Cons	tant	(D) Equal to zero			
	roperties of material can be		erty	[]
(A) Elas	•	(B) Plasticity			
(C) Vise	cosity	(D) All of the above			
<u>~</u>	of a fluid decreases with ti			[]
(A) This	-	(B) Rheopectic	a		
(C) Dila		(D) Bingham plastic	tluid	r	1
•	Kelvin model) consists of	(D) Chrina abaart		[]
(A) Spr	ing and dash pot in series	(B) Spring absent			

(C) Dash pot absent	(D) Spring and dashpot in pa	arallel	
6. Voigt model (Kelvin model) consists of		[]
(A) Spring and dash pot in series	(B) Spring absent		
(C) Dash pot absent	(D) Spring and dashpot in J	parallel	
7. Which property of milk is not affected due		[]
(A) Rheological	(B) Organoleptic		
(C) Chemical	(D) Textural		
8. If the viscosity of a fluid decreases with tim	ne, that fluid is called as	[]
(A) Thixotropic	(B) Rheopectic		
(C) Dilatant	(D) Bingham plastic fluid		
9. Viscosity is a property of the fluid that repr	esents	[]
(A) Resistance to heat flow inside the f	luid		
(B) Resistance of the fluid to shearing			
(C) Conductance of the fluid to shear re	ate		
(D) Temperature dependence of the co	phesive forces during fluid mover	nent	
10. A Newtonian liquid flowing through a	pipeline will have the velocity	profile of	the
following shape		[]
(A) Semi-circular	(B) An up-right straight line		
(C) Parabolic	(D) Hyperbolic		
11. Rheology is the science of		[]
(A) Deformation in the metals			
(B) Stress and strain behavior of meta	ıls		
(C) Deformation and flow in the visco	os elastic materials		
(D) Flow of viscous products			
12. Fluid which become more fluid (viscosity	decreases), with time as they are	stirred are	
known as	•	[]
(A) Pseudo plastic	(B) Dilatant		
(C) Thixotropic	(D) Rheopectic		
13. Rheology of food in the food processing	industry is how the food is affect		_
is applied.		[]
(A) Pressure	(B) Butter		
(C) None of the mentioned	(D) All of the mentioned		

		osity decreases with increase in sh		
Statement 2: Bingham plastics follow Newton's law of viscosity at low shears. [hears. []
(A) Bingham, Fa		(B) Dilatant, True		
(C) Pseudo plast	ic, False	(D) Newtonian fluid, True		
15. Statement 1: Blood				
	-	ds whose viscosity decreases when	_	
•	•	ne, the viscosity increases.	[]
(A) Newtonian f		(B) Rheopectic, True		
(C) Pseudo plast	ic, False	(D) Caisson plastic, True		
16. Which of the follow	ing is a name of an	actual viscometer?	[]
(A) Capillary t	ube	(B) Plate and Cone		
(C) Coaxial C	ylinder	(D) All of the mentioned		
17. Which property mea	sures the resistance	e of a liquid to flow?	[]
(A) Density	(B) Viscosity	(C) Temperature	(D) Solubil	ity
18. What is the correct de	efinition of a pseud	o plastic liquid?	[]
(A) A liquid which	becomes less visco	us as the rate of shear increases		
(B) A liquid which b	pecomes more visco	ous as the rate of shear increases		
(C) A liquid which be applied	ecomes less viscou	as over time when a constant shear	stress is	
(D) A liquid which b applied	ecomes more visco	us over time when a constant shea	r stress is	
19. After attaining the tendensity of the fluid, the p		he density of the particle is greater	r than the]
(A) Upward	(B) Downward	(C) Neither upward nor downw	ard (D) No	one
20. In aero- hydrodynam velocity is		scosity of the fluid is increases, the	e terminal []
(A) Increases	(B) Decreases	(C) Either increases or decrease	es (D) No	one
21. The science which de applied force is	eals with the deform	nation and flow of material under	the action of	f]
(A) Agricultural pro-	cess engineer	(B) Rheology		
(C) Aerodynamics		(D) hydrodynamics		

(B) Milk

(A) Vegetable oils

(C) Starch

(D) All the above

34. Property of material the removed	hat returns to its original	shape after the stress	s or external force is]
(A) Elasticity	(B) Plasticity	(C) Viscosity	(D) All the above	ve
35. Property of a material	to undergo a permanent	deformation under a	pplied load []
(A) Elasticity	(B) Plasticity	(C) Viscosity	(D) All the above	ve
36. Measure of the resista	ance of a fluid to flow		[]
(A) Elasticity	(B) Plasticity	(C) Viscosity	(D) All the above	e
37. Liquids generate a pos	sitive shear stress at zero	shear rates	[]
(A) Elasticity	(B) Bingham plastic	(C) Viscosity	(D) All the above	2
38are the time	dependent materials		[]
(A) Pseudo plastic	(B) Bingham plastic	(C) Dilatants	(D) All the abo	ove
39are the tin	ne independent depende	nt materials	[]
(A) Pseudo plastic	(B) Bingham plastic	(C) Dilatants	(D) Rheopection	c
40. Mechanical behavior	of material is expressed	in terms	[]
(A) Force	(B) Deformation	(C) Time	(D) All the abo	ve
	UNIT -V	,		
	ELECTRICAL			
1. Food texture can be e			[1
(A) Instrumental	-) Intercultural	_	•
(C) Both a and b	(D)) All of the above		
2methods a	re less expensive and le	ess time consuming a	s compared to sens	ory
methods]]
(A) Instrumental	(B) Intercultural		
(C) Sensory	(D) All of the above		
3metho	d is hard to repeat result	S]]
(A) Instrumental	(B)) Intercultural		
(C) Sensory	(D)	All of the above		

(D) All of the above

(B) Conductance heating

1

(C) Pasteurization

(A) Resistance heating

13. Ohmic heating has been using based on the

(C) Radiation	(D) All of the above		
14. Ohmic processing, sometimes described a	S	[]
(A) Resistive heating	(B) Conductive heating		
(C) Radiation	(D) All of the above		
15. The efficiency of ohmic heating is depend	lent on the of the food	[]
(A) Conductive nature	(B) Resistive nature		
(C) Radiation	(D) All of the above		
16 play a major role in determining	the interaction between the food ma	terial. []
(A) Die electrical properties	(B) Thermal properties		
(C) Electrical properties	(D) All of the above		
17. The degree of heating of a food material s	trongly influenced by the of the	food. []
(A) Die electrical properties	(B) Thermal properties		
(C) Electrical properties	(D) All of the above		
18. Dielectric heating or volumetric heating o	ccurs due toof molecules	[]
(A) Polarization	(B) Ionization		
(C) Polarization and ionization	(D) Die polarization		
19. Dielectric heating or volumetric heating a	re efficiently used in	[]
(A) Drying (B) Pasteurization	(C) Sterilization (D) All	of the ab	ove
20. Dielectric properties consist of		[]
(A) Die electric constant	(B) Die electric loss factor		
(C) Resistance	(D) All of the above		
21is a measure of the ability of a mat	erial to store electromagnetic energ	у []
(A) Die electric constant	(B) Die electric loss factor		
(C) Resistance	(D) Conductance		
22 is a measure of the ability of	a material to convert electromagnet	ic energ	y to
heat		[]
(A) Die electric constant	(B) Die electric loss factor		
(C) Resistance	(D) Conductance		

23. Light tr determining th		eflectance properties	s of agricultural commo	odities are use	ed for
(A) S	Sorting		(B) Grading		
(C) S	Surface color		(D) All of the above		
24 P grading, surface	-	lltural commodities	are used for determining	ng the sorting,	[]
(A)	Optical		(B) Frictional		
(C)	Surface color		(D) All of the above		
25. Hyper	spectral, multispec	ctral, infrared imagi	ng and computer vision	n system have	e enabled
even de	etermination of				[]
(A)	Moisture		(B) Chemical compo	sition	
(C)	Both a and b		(D) None of the abo	ove	
26	are used for d	etermination of moi	sture and other chemic	al compositio	n []
(A)	Hyper spectral		(B) Multispectral		
(C) l	Infrared imaging		(D) All of the above	ve .	
27 Electric	cal properties of th	ne biological materia	als are broadly classifie	d intoty	pes[]
(A)	2	(B) 1	(C) 3	(D) 5	
28. Electric	cal properties of th	ne biological materia	als are broadly classifie	d intotypes	s []
(A)	Active ((B) Passive	(C) Negative	(D) All of th	ne above
29clas	ssification include	s those properties c	haracterized by the ext	tended of son	ne source
of ener	gy in the material				[]
(A)	Active	(B) Passive	(C) Negative	(D) All of t	he above
30clas	ssification include	s those properties w	hich influences the dist	tribution of	
electro	magnetic fields an	d currents in the reg	gion occupied by the ma	aterial]
(A)	Active	(B) Passive	(C) Negative	(D) All of th	ne above
31. Electric	cal properties of th	ne materials depends	s upon the		[]
(A)]	Nature of the mate	rial	(B) Environmental	influence	
(C) I	Both a and b		(D) None of the abo	ove	
32. Which	one is influences	electrical property o	f the material	[]

(A) Temperature		(B) Moistu	ire content	
(C) Density of the mat	erial	(D) All of	the above	
33. Die electric constant of w	ater is		[]
(A) 80	(B) 3	3-5 (C) 4-6	(D) 2-5	
34. Die electric constant of c	arbohydrates	is	I	[]
(A) 80	(B) 3	G-5 (C) 4-6	(D) 2-5	
35. Die electric constant of p	roteins is			[]
(A) 80	(B) 3	-5 (C) 4-6	(D) 2-5	
36. Die electric constant of fa	ats is			[]
(A) 80	(B) 3	-5 (C) 4-6	(D) 2-5	
37can be used to det	ermine the e	xtent of injury to plan	t tissues due to frost	[]
(A) Impedance technique	ie	(B) Technique		
(C) Conductivity		(D) All of the abov	e	
38. The depth of penetration	of both micr	owaves and radio freq	quency energy is dete	rmined
by the				[]
(A) Dielectric constant		(B) Loss factor of the	e food	
(C) Both a and b		(D) None of the above	/e	
39 energy mostly	used to heat	or evaporate moisture	e from a product	[]
(A) Radio frequency		(B) Frequency		
(C) Both a and b		(D) None of the abo	ove	
40. The loss factor of banana	is		I	[]
(A) 18	(B) 17	(C) 12	(D) 1	

Prepared by: CH.WAGDEVI